Skip to Main Content

++

Intraperitoneal infections generally arise because a normal anatomic barrier is disrupted. This disruption may occur when the appendix, a diverticulum, or an ulcer ruptures; when the bowel wall is weakened by ischemia, tumor, or inflammation (e.g., in inflammatory bowel disease); or with adjacent inflammatory processes, such as pancreatitis or pelvic inflammatory disease, in which enzymes (in the former case) or organisms (in the latter) may leak into the peritoneal cavity. Whatever the inciting event, once inflammation develops and organisms usually contained within the bowel or another organ enter the normally sterile peritoneal space, a predictable series of events takes place. Intraabdominal infections occur in two stages: peritonitis and—if the patient survives this stage and goes untreated—abscess formation. The types of microorganisms predominating in each stage of infection are responsible for the pathogenesis of disease.

++

Peritonitis is a life-threatening event that is often accompanied by bacteremia and sepsis syndrome (Chap. 271). The peritoneal cavity is large but is divided into compartments. The upper and lower peritoneal cavities are divided by the transverse mesocolon; the greater omentum extends from the transverse mesocolon and from the lower pole of the stomach to line the lower peritoneal cavity. The pancreas, duodenum, and ascending and descending colon are located in the anterior retroperitoneal space; the kidneys, ureters, and adrenals are found in the posterior retroperitoneal space. The other organs, including liver, stomach, gallbladder, spleen, jejunum, ileum, transverse and sigmoid colon, cecum, and appendix, are within the peritoneal cavity. The cavity is lined with a serous membrane that can serve as a conduit for fluids—a property exploited in peritoneal dialysis (Fig. 127-1). A small amount of serous fluid is normally present in the peritoneal space, with a protein content (consisting mainly of albumin) of <30 g/L and <300 white blood cells (WBCs, generally mononuclear cells) per microliter. In bacterial infections, leukocyte recruitment into the infected peritoneal cavity consists of an early influx of polymorphonuclear leukocytes (PMNs) and a prolonged subsequent phase of mononuclear cell migration. The phenotype of the infiltrating leukocytes during the course of inflammation is regulated primarily by resident-cell chemokine synthesis.

++
Figure 127-1
Graphic Jump Location

Diagram of the intraperitoneal spaces, showing the circulation of fluid and potential areas for abscess formation. Some compartments collect fluid or pus more often than others. These compartments include the pelvis (the lowest portion), the subphrenic spaces on the right and left sides, and Morrison's pouch, which is a posterosuperior extension of the subhepatic spaces and is the lowest part of the paravertebral groove when a patient is recumbent. The falciform ligament separating the right and left subphrenic spaces appears to act as a barrier to the spread of infection; consequently, it is unusual to find bilateral subphrenic collections. [Reprinted with permission from B Lorber (ed): Atlas of Infectious Diseases, vol VII: Intra-abdominal Infections, Hepatitis, and Gastroenteritis. Philadelphia, Current Medicine, 1996, p 1.13.]

++

Primary (Spontaneous) Bacterial Peritonitis

++

Peritonitis is either primary (without an apparent source of contamination) or secondary. The types of organisms found and the clinical presentations of these two processes are different. In adults, primary bacterial peritonitis (PBP) occurs most commonly in conjunction with cirrhosis of the liver (frequently the result of alcoholism). However, the ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.