Skip to Main Content

++

After studying this chapter, you should be able to:

++

  • Write structural formulas to represent the amino- and oxo-tautomers of a purine and of a pyrimidine and state which tautomer predominates under physiologic conditions.
  • Reproduce the structural formulas for the principal nucleotides present in DNA and in RNA and the less common nucleotides 5-methylcytosine, 5-hydroxymethylcytosine, and pseudouridine (Ψ).
  • Represent D-ribose or 2-deoxy-D-ribose linked as either a syn or an anti conformer of a purine, name the bond between the sugar and the base, and indicate which conformer predominates under most physiologic conditions.
  • Number the C and N atoms of a pyrimidine nucleotide and of a purine nucleoside, including using a primed numeral for C atoms of the sugars.
  • Compare the phosphoryl group transfer potential of each phosphoryl group of a nucleoside triphosphate.
  • Outline the physiologic roles of the cyclic phosphodiesters cAMP and cGMP.
  • Appreciate that polynucleotides are directional macromolecules composed of mononucleotides linked by 3′ → 5′-phosphodiester bonds.
  • Understand that in the abbreviated representations of polynucleotide structures such as pTpGpT or TGCATCA, the 5′-end is always shown at the left and all phosphodiester bonds are 3′ → 5′.
  • For specific synthetic analogs of purine and pyrimidine bases and their derivatives that have served as anticancer drugs, indicate in what ways these compounds inhibit metabolism.

++

In addition to serving as precursors of nucleic acids, purine and pyrimidine nucleotides participate in metabolic functions as diverse as energy metabolism, protein synthesis, regulation of enzyme activity, and signal transduction. When linked to vitamins or vitamin derivatives, nucleotides form a portion of many coenzymes. As the principal donors and acceptors of phosphoryl groups in metabolism, nucleoside tri- and diphosphates such as ATP and ADP are the principal players in the energy transductions that accompany metabolic interconversions and oxidative phosphorylation. Linked to sugars or lipids, nucleosides constitute key biosynthetic intermediates. The sugar derivatives UDP-glucose and UDP-galactose participate in sugar interconversions and in the biosynthesis of starch and glycogen. Similarly, nucleoside-lipid derivatives such as CDP-acylglycerol are intermediates in lipid biosynthesis. Roles that nucleotides perform in metabolic regulation include ATP-dependent phosphorylation of key metabolic enzymes, allosteric regulation of enzymes by ATP, ADP, AMP, and CTP, and control by ADP of the rate of oxidative phosphorylation. The cyclic nucleotides cAMP and cGMP serve as the second messengers in hormonally regulated events, and GTP and GDP play key roles in the cascade of events that characterize signal transduction pathways. Medical applications include the use of synthetic purine and pyrimidine analogs that contain halogens, thiols, or additional nitrogen atoms in the chemotherapy of cancer and AIDS, and as suppressors of the immune response during organ transplantation.

++

Purines & Pyrimidines Are Heterocyclic Compounds

++

Purines and pyrimidines are nitrogen-containing heterocycles, cyclic structures that contain, in addition to carbon, other (hetero) atoms such as nitrogen. Note that the smaller pyrimidine molecule has the longer name and the larger purine molecule the shorter name, and that their six-atom rings ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessPharmacy Full Site: One-Year Subscription

Connect to the full suite of AccessPharmacy content and resources including 30+ textbooks such as Pharmacotherapy: A Pathophysiologic Approach and Goodman & Gilman's The Pharmacological Basis of Therapeutics, high-quality videos, images, and animations, interactive board review, drug and herb/supplements databases, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessPharmacy

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.