Skip to Main Content

++

After studying this chapter, you should be able to:

++

  • Explain the basic principles of endocrine hormone action, including the determinants of hormone target cell response and the determinants of hormone concentration at target cells.
  • Understand the broad diversity and mechanisms of action of endocrine hormones.
  • Appreciate the complex steps involved in the production, transport, and storage of hormones.

++
Table Graphic Jump Location
Favorite Table | Download (.pdf) | Print
ACTHAdrenocorticotropic hormone
ANFAtrial natriuretic factor
cAMPCyclic adenosine monophosphate
CBGCorticosteroid-binding globulin
CGChorionic gonadotropin
cGMPCyclic guanosine monophosphate
CLIPCorticotropin-like intermediate lobe peptide
DBHDopamine β-hydroxylase
DHEADehydroepiandrosterone
DHTDihydrotestosterone
DITDiiodotyrosine
DOCDeoxycorticosterone
EGFEpidermal growth factor
FSHFollicle-stimulating hormone
GHGrowth hormone
IGF-IInsulin-like growth factor-I
LHLuteotropic hormone
LPHLipotropin
MITMonoiodotyrosine
MSHMelanocyte-stimulating hormone
OHSDHydroxysteroid dehydrogenase
PNMTPhenylethanolamine-N-methyltransferase
POMCPro-opiomelanocortin
SHBGSex hormone-binding globulin
StARSteroidogenic acute regulatory (protein)
TBGThyroxine-binding globulin
TEBGTestosterone-estrogen-binding globulin
TRHThyrotropin-releasing hormone
TSHThyrotropin-stimulating hormone
++

The survival of multicellular organisms depends on their ability to adapt to a constantly changing environment. Intercellular communication mechanisms are necessary requirements for this adaptation. The nervous system and the endocrine system provide this intercellular, organism-wide communication. The nervous system was originally viewed as providing a fixed communication system, whereas the endocrine system supplied hormones, which are mobile messages. In fact, there is a remarkable convergence of these regulatory systems. For example, neural regulation of the endocrine system is important in the production and secretion of some hormones; many neurotransmitters resemble hormones in their synthesis, transport, and mechanism of action; and many hormones are synthesized in the nervous system. The word “hormone” is derived from a Greek term that means to arouse to activity. As classically defined, a hormone is a substance that is synthesized in one organ and transported by the circulatory system to act on another tissue. However, this original description is too restrictive because hormones can act on adjacent cells (paracrine action) and on the cell in which they were synthesized (autocrine action) without entering the systemic circulation. A diverse array of hormones—each with distinctive mechanisms of action and properties of biosynthesis, storage, secretion, transport, and metabolism—has evolved to provide homeostatic responses. This biochemical diversity is the topic of this chapter.

++

There are about 200 types of differentiated cells in humans. Only a few produce hormones, but virtually all of the 75 trillion cells in a human are targets of one or more of the <50 known hormones. The concept of the target cell is a useful way of looking at hormone action. It was thought that hormones affected a single cell type—or only a few kinds of cells—and that a hormone elicited a unique biochemical or physiologic action. We now know that a given hormone can affect several different cell types; that more than one hormone can affect a given cell type; and that hormones can exert many different effects in one cell or in different cells. With the discovery of specific cell-surface and intracellular hormone receptors, the definition ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.