Skip to Main Content

++
FLOW CHARTS
++

Flow charts illustrate the steps of a process and how the steps are related to each other. It can be used to describe the process, increase a team’s knowledge of the entire process, identify weaknesses or breakdown points in the current process, or design a new process. An example of a flow chart outlining how adverse drug reactions might be addressed within an organization is provided below.

++
++
PARETO CHART
++

Pareto charts are vertical bar graphs with the data presented so that the bars are arranged from left to right on the horizontal axis in their order of decreasing frequency. This arrangement helps identify which problems to address in what order. By addressing the data represented in the tallest bars (e.g., the most frequently occurring problems or contributing factors) efforts can be focused on areas where the most gain can be realized. Pareto charts are commonly used to identify issues to address, delineate potential causes of a problem, and monitor improvements in processes. An example of a Pareto chart is provided below. This example illustrates frequently occurring factors contributing to improper dose medication errors. By focusing on transcription errors as a contributing factor on which to focus quality improvement efforts, the quality improvement team will generally gain more than by tackling the smaller bars.

++
++
FISHBONE OR CAUSE-AND-EFFECT DIAGRAM
++

Fishbone or cause-and-effect diagrams represent the relationship between an outcome (represented at the head of the fish) and the possible causes of the outcome (represented as the bones of the fish). The bones of the fish should represent causes and not symptoms of the issue. Fishbone diagrams are commonly used to identify components of a process to address, delineate potential causes of a problem, or identify practitioner groups that participate in producing an outcome and should be represented in the group addressing quality issues in the process(es). An example of a Fishbone chart is provided below.

++
++
CONTROL CHARTS
++

Control charts are run charts or line graphs with defined allowable limits of variation. Data are plotted on the graph as they become available with new data points connected to older data by a continuous line. The x-axis is usually a measure of time. The control limits help identify which variations in data are important. Control limits are statistically determined based on average ranges and sample size. Fluctuation in data points above and below the average is expected and is referred to as common variation or common cause as long as they remain between the control limits. Data points above the upper control limit or below ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.