Skip to Main Content

Estimating renal function is of great importance for patients taking renally eliminated medications. The glomerular filtration rate (GFR) is an effective indicator of renal function and normal values are approximately 130 mL/min/1.73 m2 for men and 120 mL/min/1.73 m2 for women.1 GFR cannot be directly measured; therefore other measurements must be used to approximate renal function. The gold standard for approximating GFR is the inulin clearance method.2 Inulin is filtered by the glomerulus and is not secreted or reabsorbed, making it an ideal agent for approximating GFR. GFR approximation via inulin clearance is rarely done because it is costly, invasive, and requires a great deal of technical expertise.3 Other markers used to estimate GFR include iothalamate, iohexol, and ethylenediaminetetraacetic acid. Like inulin, these agents are expensive and have limited availability, making them impractical in the clinical setting.

Numerous methods have been developed to estimate GFR. A clinician must balance ease of use and accuracy to determine the best method for estimating GFR in the clinical setting.

Serum Creatinine

Creatinine is an endogenous substance that is eliminated primarily by glomerular filtration and serves an important role in estimating renal function. Creatinine is not as precise as inulin because it undergoes some tubular secretion. The range of serum creatinine (SCr) is approximately 0.6 to 1.2 mg/dL in normal, healthy adults.4 SCr is affected by age, gender, race, diet, muscle mass, and certain drugs; therefore, SCr is not used alone in predicting GFR.2 Muscle mass is a particularly important consideration when analyzing SCr values. Creatinine is a by-product of creatine metabolism and is influenced by the amount of muscle mass present in a patient.2 Patients with low muscle mass would be expected to have lower SCr values. Low muscle mass can occur in elderly, cachectic (eg, acquired immunodeficiency patients), or individuals with limited muscle use (eg, spinal cord injury).

Urinary Clearance of Creatinine

GFR can be estimated via the combination of a timed urine collection and blood sampling of creatinine. The most common time interval utilized is a 24-hour urine collection. This practice has decreased due to the difficulty with accurate collection and data indicating the 24-hour urine collection is equivalent to mathematical equations in estimating GFR.2,5

Creatinine Clearance and GFR Prediction Equations

Equations estimating GFR based on SCr, age, weight, and race are more accurate than SCr alone.2 The Cockcroft-Gault method calculates a creatinine clearance (CrCl) and is a widely used equation to estimate GFR.6


If a patient's actual body weight is below the ideal body weight (IBW), then the actual body weight should be used when calculating CrCl. The Cockcroft-Gault equation may be used for determining drug dosing in obese patients; however, it becomes less accurate in obese patients.



Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.