RT Book, Section A1 Adamson, John W. A1 Longo, Dan L. A2 Jameson, J. Larry A2 Fauci, Anthony S. A2 Kasper, Dennis L. A2 Hauser, Stephen L. A2 Longo, Dan L. A2 Loscalzo, Joseph SR Print(0) ID 1160011376 T1 Anemia and Polycythemia T2 Harrison's Principles of Internal Medicine, 20e YR 2018 FD 2018 PB McGraw-Hill Education PP New York, NY SN 9781259644016 LK accesspharmacy.mhmedical.com/content.aspx?aid=1160011376 RD 2024/04/24 AB Hematopoiesis is the process by which the formed elements of blood are produced. The process is regulated through a series of steps beginning with the hematopoietic stem cell. Stem cells are capable of producing red cells, all classes of granulocytes, monocytes, platelets, and the cells of the immune system. The precise molecular mechanism by which the stem cell becomes committed to a given lineage is not fully defined. However, experiments in mice suggest that erythroid cells come from a common erythroid/megakaryocyte progenitor that does not develop in the absence of expression of the GATA-1 and FOG-1 (friend of GATA-1) transcription factors (Chap. 92). Following lineage commitment, hematopoietic progenitor and precursor cells come increasingly under the regulatory influence of growth factors and hormones. For red cell production, erythropoietin (EPO) is the primary regulatory hormone. EPO is required for the maintenance of committed erythroid progenitor cells that, in the absence of the hormone, undergo programmed cell death (apoptosis). The regulated process of red cell production is erythropoiesis, and its key elements are illustrated in Fig. 59-1.