RT Book, Section A1 Hooper, David C. A2 Jameson, J. Larry A2 Fauci, Anthony S. A2 Kasper, Dennis L. A2 Hauser, Stephen L. A2 Longo, Dan L. A2 Loscalzo, Joseph SR Print(0) ID 1155965990 T1 Bacterial Resistance to Antimicrobial Agents T2 Harrison's Principles of Internal Medicine, 20e YR 2018 FD 2018 PB McGraw-Hill Education PP New York, NY SN 9781259644016 LK accesspharmacy.mhmedical.com/content.aspx?aid=1155965990 RD 2024/04/20 AB The action of antimicrobial agents on a range of targets within the bacterial cell can result in inhibition of bacterial growth or in killing of the bacterial cell (Chap. 139). Reduction in or loss of an agent’s antibacterial effect is referred to as resistance, and the properties of or alterations in the bacterium that result in reduced antimicrobial activity are termed resistance mechanisms. Bacteria can be resistant to single or multiple antimicrobials, as detailed in the sections that follow. The occurrence and magnitude of resistance are often assessed in clinical microbiology laboratories by measurement of the lowest drug concentration that inhibits growth of a bacterium (minimal inhibitory concentration, or MIC) with a standardized inoculum and growth conditions. MIC values are generally interpreted as representing bacterial susceptibility, intermediate susceptibility, or resistance; the interpretation is based on correlations of the MIC values with the pharmacokinetics and delivery of a drug to the site of infection in the body as well as with data from clinical trials. Thus, a clinical laboratory result of “susceptible” for a bacterium predicts a likely clinical response to an appropriately dosed antimicrobial drug by a patient infected with that organism, whereas a result of “resistant” predicts poor or no clinical response to that drug. Breakpoint MIC values for categorization of bacteria as susceptible, intermediate, or resistant are generally developed by regulatory and advisory groups and are often based on the distribution of MIC values from a large collection of recent clinical bacterial isolates. Research studies on the mechanisms and epidemiology of resistance may in some cases use different and less rigid definitions of resistance based on determination of a reproducible increase in an MIC value relative to a baseline reference MIC, independent of clinical breakpoints.