RT Book, Section A1 Kishnani, Priya S. A1 Chen, Yuan-Tsong A2 Jameson, J. Larry A2 Fauci, Anthony S. A2 Kasper, Dennis L. A2 Hauser, Stephen L. A2 Longo, Dan L. A2 Loscalzo, Joseph SR Print(0) ID 1160017961 T1 Glycogen Storage Diseases and Other Inherited Disorders of Carbohydrate Metabolism T2 Harrison's Principles of Internal Medicine, 20e YR 2018 FD 2018 PB McGraw-Hill Education PP New York, NY SN 9781259644016 LK accesspharmacy.mhmedical.com/content.aspx?aid=1160017961 RD 2024/04/18 AB Carbohydrate metabolism plays a vital role in cellular function by providing the energy required for most metabolic processes. The relevant biochemical pathways involved in the metabolism of these carbohydrates are shown in Fig. 412-1. Glucose is the principal substrate of energy metabolism in humans. Metabolism of glucose generates ATP through glycolysis and mitochondrial oxidative phosphorylation. The body obtains glucose through the ingestion of polysaccharides (primarily starch) and disaccharides (e.g., lactose, maltose, and sucrose). Lactose and fructose are two other monosaccharides that serve as sources of fuel for cellular metabolism; however, their role as fuel sources is much less significant than that of glucose. Lactose is derived from galactose + glucose, which is found in milk products, and is an important component of certain glycolipids, glycoproteins, and glycosaminoglycans. Fructose is found in fruits, vegetables, and honey. Sucrose (fructose + glucose) is another dietary source of fructose and is a commonly used sweetener.