RT Book, Section A1 Mount, David B. A2 Jameson, J. Larry A2 Fauci, Anthony S. A2 Kasper, Dennis L. A2 Hauser, Stephen L. A2 Longo, Dan L. A2 Loscalzo, Joseph SR Print(0) ID 1178487194 T1 Hypokalemia T2 Harrison's Principles of Internal Medicine, 20e YR 2018 FD 2018 PB McGraw-Hill Education PP New York, NY SN 9781259644016 LK accesspharmacy.mhmedical.com/content.aspx?aid=1178487194 RD 2024/04/18 AB Homeostatic mechanisms maintain plasma K+ concentration between 3.5 and 5.0 mM, despite marked variation in dietary K+ intake. In a healthy individual at steady state, the entire daily intake of potassium is excreted, ~90% in the urine and 10% in the stool; thus, the kidney plays a dominant role in potassium homeostasis. However, >98% of total-body potassium is intracellular, chiefly in muscle; buffering of extracellular K+ by this large intracellular pool plays a crucial role in the regulation of plasma K+ concentration. Changes in the exchange and distribution of intra- and extracellular K+ can thus lead to marked hypo- or hyperkalemia. A corollary is that massive necrosis and the attendant release of tissue K+ can cause severe hyperkalemia, particularly in the setting of acute kidney injury and reduced excretion of K+.